OSAGE RIVER BASIN 107 ## 06917630 EAST FORK DRYWOOD CREEK AT PRAIRIE STATE PARK (Ambient water-quality monitoring network) ## WATER-QUALITY RECORDS PERIOD OF RECORD. -- November 1993 to current year. REMARKS.--Several periods of no flow during the year in which samples are collected at Fleck Creek at Prairie State Park (06917635). Fleck Creek data is located in the partial records section of this report. ## WATER-QUALITY DATA, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996 | DATE | | TIME | DI:
CHAR
INS'
(CUB
FE:
PE:
SECO! | GE,
I.
IC TEME
ET ATU
R WAT
ND) (DEG | CI
PER- CO
IRE DU
PER AN
F C) (µS | PE- V
FIC V
DN- F
JCT- (S
JCE | PH
NATER
NHOLE
FIELD
STAND-
ARD
NNITS) | DI
SOL | GEN,
S-
VED
/L)
00) | SOL
(PE
CE | S- I
VED
R-
NT
UR- I
ON) | OXYG
DEMAI
CHEI
ICAI
(HIC
LEVEI
(mg/I | ND,
M-
L
GH
L) (
L) 1 | COLI
FORM
FECA
0.7
µm-M
COLS
00 m | 4, TOO
AL, FI
7 KF
4F (CO
3./ I
nL) 100 | TREP-
COCCI
CCAL,
AGAR
OLS.
PER
(mL) | LINITY WAT WH TOT FET FIELD mg/L as CaCO ₃ | 3 | |-----------------|---------|----------------------------|--|--|---|--|--|---|---------------------------------|--|---|---|---|---|--|---|---|---| | MAR
18 | | 1430 0 | | 10 10 | .0 | 218 | 7.3 | | 7.0 | | 62 | | | K2 | | K13 | 82 | | | APR
01 | | 1205 | 0. | 11 14 | . 0 | 195 | 7.1 | 9 | . 4 | | 90 | | | 35 | 70 | 680 | 39 | | | 24
MAY | | 1000 0.76 | | 76 14 | . 0 | 172 | 7.3 | 6 | . 9 | | 66 | | K | | 26 | 150 | 20 | | | 07
JUN | | 0900 | 14 | 18 | .5 | 108 | 7.0 | 5 | . 9 | | 62 | | 12 | 11 | LO | 170 | 16 | | | 19 | 19 093 | | 0.50 | | 1.5 | 133 | 6.8 | 2 | 2.7 | | 31 | | 13 11 | | 00 | 100 | 40 | | | 28 | | 1100 1 | | 23 | .5 | 110 | 7.3 | | 7.2 | | 85 | | 2 | | LO : | 600 | 32 | | | DAT | ГЕ | WH
FI
(mg/
HC | ATE
TER
IT
ELD | CAR-
BONATE
WATER
WH IT
FIELD
mg/L as
CO ₃)
(00447) | NITRO-
GEN,
NO ₂ +NO ₃
TOTAL
(mg/L
as N) | GEN,
NITRIT
TOTAI
(mg/I
as N | GE AMMO
L TO
L (m | TRO-
EN,
ONIA
TAL
g/L
s N)
610) | MONI
ORGA
TOT
(mg | AM-
IA +
NIC
IAL
J/L
N) | PHOS
PHOR
TOTA
(mg,
as | US
AL
/L
P) | PHOS
PHORU
ORTH
TOTA
(mg/
as: | JS
O
AL
'L
P) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900 | D:
SO
(
as | LCIUM
IS-
LVED
mg/L
s Ca)
0915) | | | MAF | R
18 | | 100 | 0 | <0.020 | <0.010 | 0. | 040 | 0. | 92 | <0.02 | 20 | <0.01 | .0 | | | | | | APF | R
01 | | 49 | 0 | 0.080 | <0.010 | 0. | 030 | 0. | 84 | 0.0 | 50 | 0.03 | 30 | | | | | | | 24 | | 24 | 0 | <0.020 | <0.010 | 0. | 050 | 0. | 61 | 0.04 | 40 | <0.01 | .0 | | | | | | JUL | 07
N | | 16 | 0 | 0.150 | <0.010 | 0. | 020 | 0. | 72 | 0.0 | 50 | 0.01 | .0 | 34 | | 8.8 | | | 1
AUC | 19
3 | 47 | | 0 | 0.080 | 0.010 | 0. | 0.960 | | 2.1 | | 20 | 0.020 | | 44 | | 11 | | | 2 | 28 | | 36 | 0 | <0.020 | <0.010 | 0. | 030 | 0. | 45 | <0.02 | 20 | <0.01 | .0 | | | | | | DAT | ГE | S
D
SO
(m
as | GNE-
IUM,
IS-
LVED
g/L
Mg)
925) | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | POTAS-
SIUM,
DIS-
SOLVEI
(mg/L
as K)
(00935) | SULFAT
DIS-
SOLVE
(mg/I
as SO ₄ | TE RI
- D
ED SO
- (m
₁) as | LO-
DE,
IS-
LVED
g/L
C1)
940) | | E,
S-
VED
J/L
F) | AT 18 | OUE
30
. C
S-
VED
'L) | RESID
TOTAL
AT 10
DEG.
SUS-
PENDE
(mg/
(0053 |)5
C,
D
L) | ALUM-
INUM,
TOTAL
RECOV-
ERABLI
(µg/L
as Al) | I
S
S
(a | LUM-
NUM,
DIS-
OLVED
µg/L
s A1)
1106) | | | ZAM
)
MUL | 07 | | 3.0 | 6.3 | 2.3 | 28 | 3 | 3.0 | <0. | 10 | 9 | 92 | 1 | .1 | 400 | | 220 | | | 1 | 19 | | 4.0 | 6.4 | 3.6 | 14 | 1 | 0 | 0. | 10 | 8 | 36 | 1 | .8 | 210 | | 26 | | | | DATE | TO
RE
ER
(μ
as | MIUM
TAL
COV-
ABLE
g/L
Cd)
027) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | COPPER,
DIS-
SOLVEI
(µg/L
as Cu)
(01040) | DIS-
SOLVE
(µg/L
as Fe | TO
- RE
ED ER
(μ ₂ | AD,
TAL
COV-
ABLE
g/L
Pb)
051) | SOI
(µg | S-
VED
/L
Pb) | MANG
NESI
SOLV
(µg/
as I | S-
VED
'L
Mn) | MERCU
TOTA
RECO
ERAE
(µg/
as H | AL
OV-
BLE
L
Ig) | ZINC,
TOTAL
RECOV-
ERABLI
(µg/L
as Zn
(01092 | -
E S
() | INC,
DIS-
OLVED
1g/L
s Zn)
1090) | | | ZAM
) | Y
07 | | <1 | <1.0 | 1.7 | 350 |) | 2 | 3 | 3.0 | | 30 | <0.1 | .0 | 9 | | 5.0 | | | JUI | | | <1 | <1.0 | <1.0 | 340 | | 2 | | . 0 | | 00 | <0.1 | | 8 | | 2.9 | $\hbox{K--Results are based on colony count outside the acceptable range (non-ideal colony count).} \\$